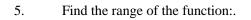
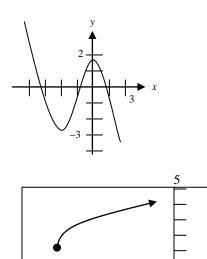

Precalculus Chapter 1 Test Review

1. Graph each equation:


- 2. Find an equation of the line that passes through (15, 1) and is
- a) parallel to the line x 3y = 1b) perpendicular to the line 5x + 3y = 5

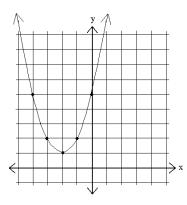
⊤ -3


- 3. Determine which equation(s) represents *y* as a function of *x*.
 - (a) y = |x|(b) 3x + 2y = 9(c) |y| = 2x - 1

(c)
$$y = (x-2)^2 - 2$$

4. Given $f(x) = x^2 + 2x - 3$, find f(x+3) - f(3).

6. Determine the open intervals in which the function is increasing, decreasing, or constant.


2

-2

-9

7. The graph at the right is a transformation of the graph of $f(x) = \sqrt{x}$. Find an equation for the function.

8. Use the following graph to find: f(-4), f(-2), f(-1), and f(0).

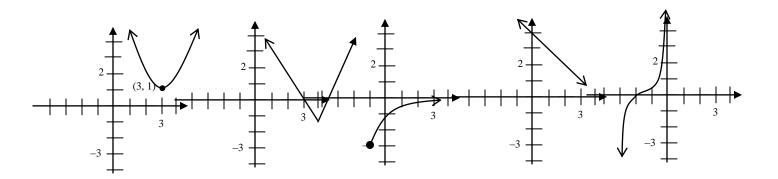
- 9. Given $f(x) = 2x^2 5$ and g(x) = 3 x, find $(f \circ g)(x)$.
- 10. Algebraically, determine if the functions are inverses of each other.

$$f(x) = \frac{2x+5}{3} \quad g(x) = \frac{3x-5}{2}$$

11. a) Given $f(x) = \frac{1}{2}x^2 + 3$, $x \ge 0$ find $f^{-1}(x)$.

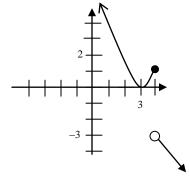
b) Given $g(x) = (x-4)^3$, find the inverse of the function.

12. If
$$f(x) = x^2 + 6x + 9$$
, then find $\frac{f(x+a) - f(a)}{x}, x \neq 0$.


- 13. For the function $f(x) = x^2 3x 5$, determine the intervals for which $f(x) \ge 0$.
- 14. Determine the domain of the function: $f(x) = \frac{8}{x^2 9}$

15. Graph:
$$f(x) = \begin{cases} (x-3)^2, & x \le 4 \\ -x, & x > 4 \end{cases}$$

16. Given $f(x) = x^2$ and g(x) = 2x - 7, find the following: f + g, fg, and (f - g)(5).


Precalculus Chapter 1 Test Review Solutions

1. Graph each equation: b) y = |x-4| - 1 c) $y = \sqrt{x+1} - 3$ d) y = -x+4 e) $y = (x+2)^3$ a) $y = (x-3)^2 + 1$

2. a)
$$y = \frac{1}{3}x - 4$$
 b) $y = \frac{3}{5}x - 8$

- 3. a, b, and c
- 4. $x^2 + 8x$
- 5. $y \ge -2$
- 6. Increasing: (-2, 0); Decreasing: $(-\infty, -2)$, $(0, \infty)$
- 7. $f(x) = \sqrt{x+7} + 1$
- 8. f(-4) = 5, f(-2) = 1, f(-1) = 1, f(0) = 59. $2x^2 12x + 13$
- 10. f(g(x)) = x, so yes.
- 11. a) $y = \sqrt{2x-6}$ b) $y = \sqrt[3]{x} + 4$
- 12. x + 2a + 6
- 13. $x \le -1.19$ and $x \ge 4.19$
- 14. Domain: ARN except ± 3
- 15.

16.
$$f + g = x^2 + 2x - 7$$
; $fg = 2x^3 - 7x^2$; $(f - g)(5) = 22$