

**Table of Contents** 

# Area of Trapezoids

**Full Page View** 

(日)

## Goal

Find the area of trapezoids.

## **Key Words**

- trapezoid p. 332
- base of a trapezoid p. 332
- height of a trapezoid

Recall that the parallel sides of a trapezoid are called the bases of the trapezoid, with lengths denoted by  $b_1$  and  $b_2$ .

The shortest distance between the bases is the **height of the trapezoid**.



≪<

Suppose that two congruent trapezoids with bases  $b_1$  and  $b_2$  and height *h* are arranged to form a parallelogram as shown.



# Student Help

**LOOK ВАСК** To review more about trapezoids, see p. 332. The area of the parallelogram is  $h(b_1 + b_2)$ . Because the two trapezoids are congruent, the area of one of the trapezoids is half the area of the parallelogram.

### **AREA OF A TRAPEZOID**

Words Area = 
$$\frac{1}{2}$$
(height)(sum of bases)  
Symbols  $A = \frac{1}{2}h(b_1 + b_2)$ 

## EXAMPLE **1** Find the Area of a Trapezoid

Find the area of the trapezoid. 6 in. 5 in. **Solution** 8 in.  $A = \frac{1}{2}\boldsymbol{h}(\boldsymbol{b}_1 + \boldsymbol{b}_2)$  Formula for the area of a trapezoid  $=\frac{1}{2}(5)(6+8)$ Substitute 5 for h, 6 for  $b_1$ , and 8 for  $b_2$ .  $=\frac{1}{2}(5)(14)$ Simplify within parentheses. = 35Simplify.

**ANSWER** The area of the trapezoid is 35 square inches.





#### Find the area of the trapezoid.



### EXAMPLE 2 Use the Area of a Trapezoid



# Checkpoint V Use the Area of a Trapezoid

A gives the area of the trapezoid. Find the missing measure.



**7.** A trapezoid has an area of 294 square yards. Its height is 14 yards and the length of one base is 30 yards. Find the length of the other base.

|                                       | Full Page View | Section Page | Page Section |
|---------------------------------------|----------------|--------------|--------------|
| Go to classzone.com Table of Contents | ) � � E        | Page 3 of 5  |              |

# 8.6 Exercises

# **Guided Practice**

- **Vocabulary Check**
- **1.** Sketch a trapezoid. Label its height h and its bases  $b_1$  and  $b_2$ .
- **Skill Check**

Find the height and the lengths of the bases of the trapezoid.



### Match the trapezoid with the equation used to find the height.



# **Practice and Applications**



|                                           | Full Page View | Section Page | Page Section |
|-------------------------------------------|----------------|--------------|--------------|
| (i) Go to classzone.com Table of Contents |                | Page 4       | of 5 🜔 🔊     |

**15. Visualize It!** Draw three different trapezoids with a height of 5 units and bases of 3 units and 7 units. Then find the areas of the trapezoids. What do you notice?

### Technology In Exercises 16 and 17, use geometry software.

- **1** Draw a trapezoid.
- **2** Draw the midsegment.
- **16.** Find the length of the midsegment and the height of the trapezoid. Multiply the two measures.
- **17.** Find the area of the trapezoid. How does the area compare to your answer for Exercise 16?



Using Algebra In Exercises 18–20, A gives the area of the trapezoid. Find the missing measure.



- 21. A trapezoid has an area of 50 square units. The lengths of the bases are 10 units and 15 units. Find the height.
- **22.** A trapezoid has an area of 24 square units. The height is 3 units and the length of one of the bases is 5 units. Find the length of the other base.

#### **Bridges** In Exercises 23–25, use the following information.

The roof on the bridge below, consists of four sides: two congruent trapezoids and two congruent triangles.



Doe River Covered Bridge in Elizabethton, Tennessee

- **23.** Find the combined area of the two trapezoids.
- **24.** Use the diagram at the right to find the combined area of the two triangles.
- **25.** What is the area of the entire roof?



449





Student Help



#### **HOMEWORK HELP**

Extra help with problem solving in Exs. 21-22 is at classzone.com



Student Help VISUAL STRATEGY To find the area of a complex polygon, you can add the areas of the simpler shapes that make up the polygon, as shown on p. 410. Windows Find the area of the window.



**Using the Pythagorean Theorem** Find the height using the Pythagorean Theorem and a calculator. Then find the area of the trapezoid.



Standardized Test Practice

| 32. Multiple Choice                            | What is the area of          | the trapezoid? |
|------------------------------------------------|------------------------------|----------------|
| (A) $25 \text{ in.}^2$                         | <b>B</b> 42 in. <sup>2</sup> | 8 in.          |
| <b>C</b> 68 in. <sup>2</sup>                   | <b>D</b> 84 in. <sup>2</sup> | 4 in.          |
|                                                |                              | 13 in          |
| 33. Multiple Choice                            | What is the area of          | the trapezoid? |
| <b>(F)</b> 88 ft <sup>2</sup>                  | <b>G</b> 128 ft <sup>2</sup> | 16 ft          |
| $\textcircled{\textbf{H}}$ 152 ft <sup>2</sup> | <b>J</b> $176 \text{ ft}^2$  | 8 ft           |
|                                                |                              | 6 ft           |
|                                                |                              |                |

**Mixed Review** Finding Area Match the region with a formula for its area. Use each formula exactly once. (Lessons 8.3–8.6)

**A.**  $A = s^2$ 

**B.**  $A = \frac{1}{2}d_1d_2$ 

| 35. | Region 2 |  |
|-----|----------|--|

**34.** Region 1

**36.** Region 3

**38.** Region 5

**37.** Region 4 **D.** 





### **Algebra Skills**

**Fraction Operations Add or subtract. Write the answer as a fraction in simplest form.** (*Skills Review, p. 658*)

**39.** 
$$\frac{3}{8} + \frac{5}{8}$$
 **40.**  $\frac{5}{9} - \frac{2}{9}$  **41.**  $\frac{3}{4} + \frac{1}{12}$  **42.**  $\frac{4}{7} - \frac{1}{5}$