

Solid Figures

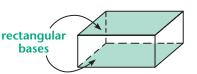
Full Page View

目)

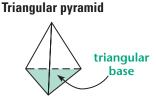
€) **Q**)

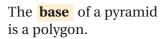
Goal

Identify and name solid figures.

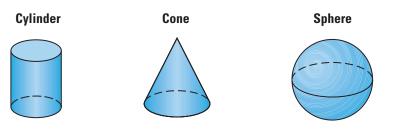

Key Words

- solid
- polyhedron
- base
- face
- edge


The three-dimensional shapes on this page are examples of *solid figures*, or **solids**. When a solid is formed by polygons, it is called a **polyhedron**.

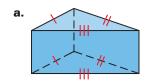

Polyhedra Prisms and pyramids are examples of polyhedra. To name a prism or pyramid, use the shape of the *base*.

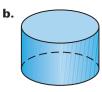
Rectangular prism



The two **bases** of a prism are congruent polygons in parallel planes.

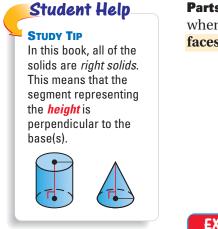
Not Polyhedra Solids with curved surfaces, like the cylinder, cone, and sphere shown below, are not polyhedra.

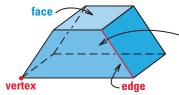

Student Help


VOCABULARY TIP

Poly-means "many" and -hedron is Greek for "side" or "face." A polyhedron is a figure with many faces. The plural of polyhedron is polyhedra.

EXAMPLE Identify and Name Polyhedra


Tell whether the solid is a polyhedron. If so, identify the shape of the bases. Then name the solid.



Solution

- **a.** The solid is formed by polygons so it is a polyhedron. The bases are congruent triangles in parallel planes. This figure is a triangular prism.
- **b.** A cylinder has a curved surface, so it is not a polyhedron.

Parts of a Polyhedron To avoid confusion, the word *side* is not used when describing polyhedra. Instead, the plane surfaces are called **faces** and the segments joining the vertices are called **edges**.

The trapezoidal faces of this polyhedron are the bases.

EXAMPLE 2 Find Faces and Edges

Use the diagram at the right.

- **a.** Name the polyhedron.
- **b.** Count the number of faces and edges.
- **c.** List any congruent faces and congruent edges.

Solution

- **a.** The polyhedron is a hexagonal pyramid.
- **b.** The polyhedron has 7 faces and 12 edges.
- c. Using the markings on the diagram, you can conclude the following:

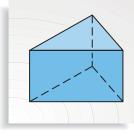
Congruent faces

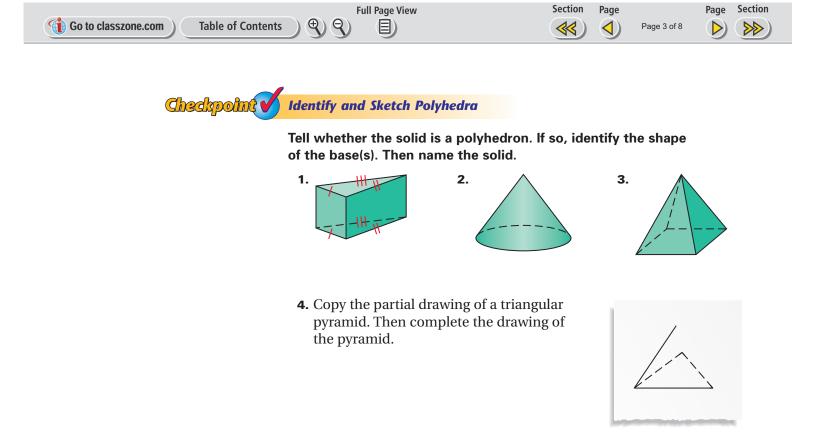
Congruent edges

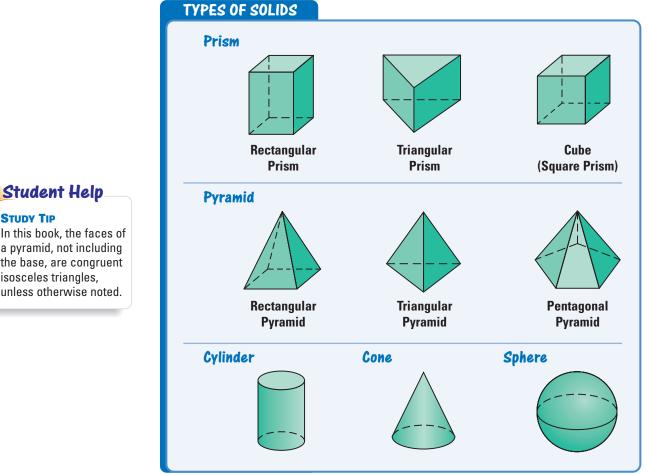
 $\triangle PQV \cong \triangle QRV \cong \triangle RSV \cong \triangle STV \cong \triangle TUV \cong \triangle UPV$

 $\overline{PQ} \cong \overline{QR} \cong \overline{RS} \cong \overline{ST} \cong \overline{TU} \cong \overline{UP}$ $\overline{PV} \cong \overline{QV} \cong \overline{RV} \cong \overline{SV} \cong \overline{TV} \cong \overline{UV}$

Student Help_


VISUAL STRATEGY For more help drawing three dimensional figures, see p. 472.


EXAMPLE 3 Sketch a Polyhedron

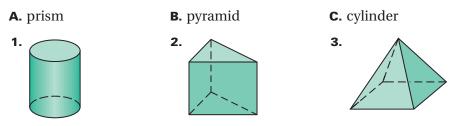

Sketch a triangular prism.

Solution

- Draw the triangular bases.
- Connect the corresponding vertices of the bases with vertical lines.
- 3 Partially erase the hidden lines to create dashed lines. Shade the prism.

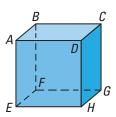
STUDY TIP In this book, the faces of

a pyramid, not including the base, are congruent isosceles triangles, unless otherwise noted.

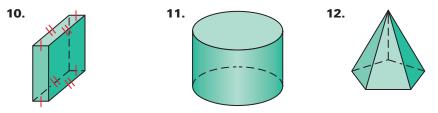

	Full Page View	Section Page	Page Section
(1) Go to classzone.com Table of Contents		Page 4 of 8	

9.1 Exercises

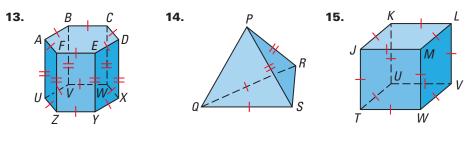
Guided Practice



In Exercises 1–3, match the solid with its name.



In Exercises 4–9, tell whether the statement is *true* or *false*. Refer to the prism below, if necessary.


- **4.** *CDHG* is a face of the prism.
- 5. A prism has only one base.
- **6.** *ABCD* and *EFGH* are possible bases of the prism.
- **7.** An edge of the prism is *H*.
- **8.** \overline{GC} is an edge of the prism.
- **9.** A prism is a polyhedron.

Skill Check Tell whether the solid is a polyhedron. If so, identify the shape of the base(s). Then name the solid.

Name the polyhedron. Count the number of faces and edges. List any congruent faces and congruent edges.

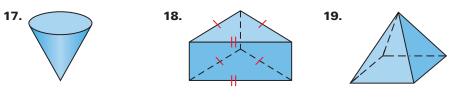
16. Visualize It! How many faces and edges does a box of cereal have?

Extra Practice

Homework Help

Example 1: Exs. 17–19, 25–35

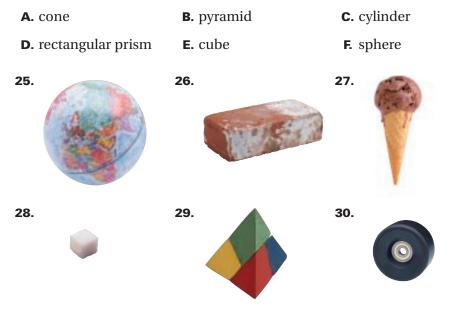
Example 2: Exs. 36–38


Example 3: Exs. 43-51

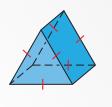
See p. 691.

Name Bases and Solids Tell whether the solid is a polyhedron. If so, identify the shape of the base(s). Then name the solid.

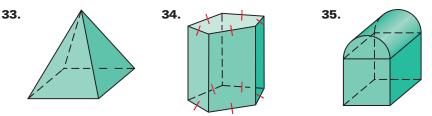
Section


Page

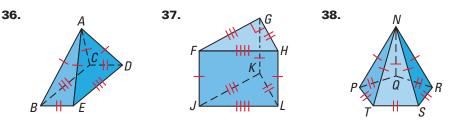
Logical Reasoning Tell whether the statement is true or false.


- 20. A rectangular pyramid has two bases.
- **21.** A triangular prism has two bases.
- **22.** The bases of a prism are congruent polygons.
- **23.** A cone has two bases.
- **24.** A sphere is a polyhedron.

Identify Solids Match the solid with its name.



Error Analysis Julie incorrectly identified the solid below as a pyramid with a square base.


- **31.** Correctly identify the solid.
- **32.** What would you say to Julie to help her tell the difference between this solid and a pyramid?

Identify Polyhedra Tell whether the solid is a polyhedron. If so, identify the shape of the base(s). Then name the solid.

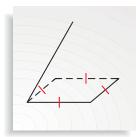
Counting Faces and Edges Name the polyhedron. Then count the number of faces and edges. List any congruent faces and congruent edges.

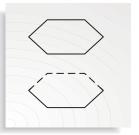
Logical Reasoning Determine whether the statement is *true* or *false*. Explain your reasoning.

39. Prisms, pyramids, cylinders, cones, and spheres are all solids.

40. Prisms, pyramids, cylinders, cones, and spheres are all polyhedra.

41. Every face of a prism is also a base of the prism.


42. Every base of a prism is also a face of the prism.


Visualize It! Copy the partial drawing. Then complete the drawing of the solid.

43. square pyramid

44. hexagonal prism

45. cylinder

Sketching Solids Sketch the solid described.

46. rectangular prism48. cube50. cylinder

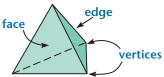
47. rectangular pyra	ımid
49. cone	
51. sphere	

Student Help

STUDY TIP Use a pencil when drawing solids so that you can erase hidden lines easily.

 Section
 Page
 Page
 Section

 Image
 Image
 Page 7 of 8
 Image
 Image


EXAMPLE Euler's Formula

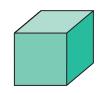
Full Page View

(国)

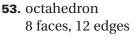
Mathematician Leonhard Euler proved that the number of faces (*F*), vertices (*V*), and edges (*E*) of a polyhedron are related by the formula F + V = E + 2.

Use Euler's Formula to find the number of vertices on the *tetrahedron* shown.

Solution


The tetrahedron has 4 faces and 6 edges.

F + V = E + 2	Write Euler's Formula.
4 + V = 6 + 2	Substitute 4 for F and 6 for E.
4 + V = 8	Simplify.
V = 8 - 4	Subtract 4 from each side.
V = 4	Simplify.


ANSWER The tetrahedron has 4 vertices.

Platonic Solids A Platonic solid has faces that are congruent, regular polygons. Use the example above to find the number of vertices on the Platonic solid.

52. cube 6 faces, 12 edges

54. dodecahedron 12 faces, 30 edges

55. icosahedron 20 faces, 30 edges

Using Algebra Use Euler's Formula to find the number of faces, edges, or vertices. Use the example above as a model.

- 56. A prism has 5 faces and 6 vertices. How many edges does it have?
- **57.** A pyramid has 12 edges and 7 vertices. How many faces does it have?
- 58. A prism has 8 faces and 12 vertices. How many edges does it have?

PLATO The solids on this page are called *Platonic solids*, named after the Greek mathematician and philosopher Plato. The image of Plato above is a detail of *The School of Athens* (1509–10) by Raphael.

Standardized Test	59. Multiple Cha	ice How many f	aces does the prisr	n below have?
Practice	A 2	B 3		
	C 4	D 5		
	60. Multiple Cho the pyramid a	lice How many e at the right have?	0	Α
	(F) 6	G 5		
	H 4	J 3		
	61. Multiple Cho the pyramid a		vertices does	2- 1
	A 6	B 5	C 4	D 3
Mixed Review	-		d Rectangles Use easure. (Lesson 8.	-
	62. A square has a side length of 9 centimeters. Find its area.			
	63. A rectangle has a height of 4 meters and a base length of 7 meters. Find its area.			
	64. A rectangle has an area of 60 square inches and a height of 6 inches. Find the length of its base.			
	65. A square has	an area of 169 sq	uare feet. Find its	side length.
	-	he circle. Round	of a Circle Find t your answers to th	
	66.	67.	6	8. 14 yd

Algebra Skills

Evaluating Expressions Evaluate the expression.

69. 92 - (12 + 39)	70. 8 + 4 • 3 − 5	71. (7 − 5) • 14
72. $10 - (5 - 2)^2 + 8$	73. $14 + 4^2 - 26$	74. $3(10 - 3)^2$

´5 cm

Substituting and Simplifying Expressions Evaluate the expression when l = 3, h = 5, and w = 2. Write your answer in terms of π , if appropriate. (*Skills Review*, *p.* 674)

75. ℓ • w • h	76. $2\ell + 2w + 2h$	77. 2πh
78. $\pi w^2 h$	79. $\pi \ell^2$	80. 2 <i>l</i> + 2 <i>w</i>