Term	Definition
Domain	
Range	
Set Builder Notation	
Interval Notation	

Domain & Range

Example 1: What are the domain and range of the function $y = x^2 - 3$?

	Set Builder Notation	Interval Notation
Domain		
Range		

Example 2: A rocket water toy is launched from 1 foot below the surface of the water. The path of the toy is modeled by the function $y = -x^2 + 4x + 1$ where x is the time since the toy was launched. What are the domain and range of the function?

	Set Builder Notation	Interval Notation
Domain		
Range		

Example 3: What is the domain and range of the function $y = -x^2 + 9$?

	Set Builder Notation	Interval Notation
Domain		
Range		

Example 4: For what x-intervals are the functions in Examples 1-3 positive? Negative? Use interval notation.

Example	Positive	Negative
1		
2		
3		

IMPORTANT

We can find the domain of a function if it is given in graph form or equation form.

We will only find the range of a function if it is given in graph form.

Domain of Functions in Equation Form

1. _____

2. _____

3. _____

Example 5: Find the domain of each function. Use words first, then interval notation.

a) y = 2x - 4 b) y = |x - 4| c) $y = \sqrt{x + 3}$ d) $y = \frac{x - 5}{x + 6}$

Intercepts

Example 6: A car starts a journey with a full tank of gas. The equation y = 16 - 0.05x relates the number of gallons of gas, y, left in the tank to the number of miles the car has traveled, x. What are the x- and y-intercepts and what do they represent?

x-intercepts	
y-intercepts	

Example 7: Find the x- and y-intercepts of the following functions:

a)
$$y = |x| - 3$$

b) $y = 4 - x^2$
c) $y = 2x - 6$

x-intercepts	x-intercepts	x-intercepts	
y-intercepts	y-intercepts	y-intercepts	

Increasing & Decreasing

Example 8: Give the x-intervals where the functions below are increasing and decreasing and where they are positive and negative. Use interval notation.

Average Rate of Change of a Function over an Interval

Example 9: What do the average rates of change over the following intervals indicate about each given function? Intervals: [-2, 0], [0, 3], [-2, 3]

a) y = 1 b) y = 2x - 1 c) $y = x^2$ d) y = |x| + 2