Definitions

1.	Vector:
2.	Vector Notation:
3.	Magnitude of a Vector:
4.	Direction Angles:
5.	Standard Position of a Vector:

Component Form of a Vector

Consider a vector with initial point P(p_1, p_2) and terminal point Q(q_1, q_2)	₂):
Component Form:	
Magnitude:	

Example 1: Find the component form and magnitude of the vector v that has initial point (4, -7) and terminal point (-1, 5). Sketch the vector.

Practice Problem 1: Find the component form and magnitude of the vector v that has initial point (-2, 3) and terminal point (-7, 9). Sketch the vector.

Vector Operations: Scalar Multiplication and Vector Addition

Consider $u = \langle u_1, u_2 \rangle$ and $v = \langle v_1, v_2 \rangle$ u + v = If k is a real number ku =

Example 2: Let $v = \langle -2,5 \rangle$ and $w = \langle 3,4 \rangle$, find each of the following vectors:

a) 2v b) w - v c) v + 2w

Practice Problem 2: Let $u = \langle 1, 2 \rangle$ and $v = \langle 3, 1 \rangle$, find each of the following vectors:

a) u + v b) u - v c) 2u - 3v

Unit Vectors

Unit Vector =

Example 3: Find a unit vector in the direction of $v = \langle -2,5 \rangle$.

Practice Problem 3: Find a unit vector in the direction of $v = \langle 7, -3 \rangle$.

Linear Combination Form of Vectors

Example 4: Let u be the vector with initial point (2, -5) and terminal point (-1, 3). Write u in linear combination form.

Practice Problem 4: Let u be the vector with initial point (-2, 6) and terminal point (-8, 3). Write u in linear combination form.

Example 5: Let u = -3i + 8j and v = 2i - j. Find 2u - 3v.

Practice Problem 5: Let u = i + j and v = 5i - 3j. Find 2u - 3v.

Direction Angles

If u is a unit vector in standard position as shown below

Then $u = \langle x, y \rangle =$

 $\tan\theta =$

Example 6: Find the direction angle of each vector:

a)
$$u = 3i + 3j$$
 b) $v = 3i - 4j$

Practice Problem 6: Find the direction angle of each vector:

a) v = -6i + 6j b) v = -7i - 4j