Chapter 9 Focus Questions

Section 1

- 1. Why in methane would using existing orbitals for carbon result in 2 different types of C-H bonds?
- 2. Why is this a problem?
- 3. Why would the p orbitals result in 90° bond angles? Why is this a problem?
- 4. What is hybridization?
- 5. Why is the hybridized idea a better explanation than the original "native" orbitals? In other words why does sp^3 hybridization make sense in terms of orbital shape, geometry, and energy?
- 6. Look at Figure 9.5. If the hybridized orbitals represent <u>higher</u> energy than the "native" 2*s* orbital, why would they occur?
- 7. What determines whether an atom will use native or hybridized orbitals?
- 8. Double bonds affect shape how?
- 9. Why does sp^3 hybridization not work for ethylene?
- 10. How many orbitals are hybridized to achieve the required geometry of ethylene? How many are <u>not</u> hybridized?
- 11. What is a sigma (σ) bond and how does it form?
- 12. What is a pi (π) bond and what is its geometry in relation to the σ bond? What part of the ethylene Lewis structure does it represent?
- 13. σ bonds form from orbitals that _____ each other. π bonds form from _____ orbitals.
- 14. A double bond is formed from $___ \sigma$ and $___ \pi$ bonds. A triple bond is formed from $__ \sigma$ and $___ \pi$ bonds. A single bond is formed from $__ \sigma$ and $___ \pi$ bonds.
- 15. What is the general principle of the sp^2 orbital?
- 16. For CO₂, how is the 180° bond angle satisfied with hybridization?
- 17. In CO₂, the O's undergo _____ hybridization and the single C undergoes _____ hybridization.
- 18. How many hybridized orbitals does C have? How many unhybridized orbitals?
- 19. How are the 2 double bonds achieved in by the single C in CO_2 ?
- 20. What is the geometric orientation of the two π bonds that carbon has in CO₂? How is this achieved by the unhybridized orbitals?
- 21. N₂ has _____ σ and _____ π bonds based on its Lewis structure. It undergoes ______ hybridization. Each N atom has ______ hybridized orbitals and ______ unhybridized orbitals.
- 22. How is nitrogen able to achieve its triple bond with another nitrogen in N_2 ?
- 23. Why are 5 orbitals needed in order to achieve trigonal bipyramidal orientation of the PCl₅ molecule? What hybridization is this called?
- 24. In PCl₅, the P undergoes _____ hybridization, while each Cl undergoes _____ hybridization. In the total molecule, there are _____ σ and _____ π bonds.
- 25. For SF_6 , hybridization must explain the _____ shape of the molecule. What is this hybridization called? How many orbitals (and which ones) are hybridized? How many are unhybridized?

- 26. What is the general plan for determining the localized electron model of hybridization?
- 27. What is the general correlation between stearic number, VSEPR shape, bond angle, and hybridization for each type of structure that we have studied?
- 28. Read through sample exercises 9.1 through 9.5. Then do problems #21, 23, and 25 on page 442.

Sections 9.2-9.4

I suggest reading them to enhance your knowledge, but I will not be assigning focus questions for these sections. In understanding these sections (and all sections really) – focus on the figures. Use the text to understand what the figures are attempting to illustrate for you.