ELEMENTary Knowledge

	,	ou will	need to know for the E	LEMENTary knowledge
	omic Ions		1	tions
Hydroxide		OH	density	d = m/V
Acetate	C_2	$H_3O_2^-$	molarity	M = mol/L
Nitrate		NO ₃ ⁻	Dilution eqn	$M_1V_1 = M_2V_2$
Nitrite		NO_2^-	Boyle's Law	$\mathbf{P}_1 \mathbf{V}_1 = \mathbf{P}_2 \mathbf{V}_2$
Carbonate		CO_3^{2-}	Charles' Law	$T_1/V_1 = T_2/V_2$
Chromate	($\operatorname{CrO_4^{2-}}$	Gay-Lussac's Law	$T_1/P_1 = T_2/P_2$
Sulfate		SO_4^{2-}	Combined Gas Law	$P_1V_1/T_1 = P_2V_2/T_2$
Sulfite		SO ₃ ²⁻	Heat due to temp change	$q = mc\Delta T$
Phosphate		$\overline{PO_4^{3-}}$	Heat due to melting	$q = mL_f$
Ammonium		NH ₄ ⁺	Heat due to vaporizing	$q = mL_v$
Hydronium		H_3O^+		
	cids	5 -		
Acetic acid		$_2H_3O_2$		
Carbonic acid		I_2CO_3		
Hydrochloric acid		HCl	I Ir	nits
Nitric acid	1	HNO ₃	length	cm, m
Sulfuric acid	-	H_2SO_4	area	cm^2, m^2
	nic Gases	12504	volume	cm^3 , m^3 , mL, L
Hydrogen Unator		H ₂	temperature	°C, K
		$\overline{\mathbf{O}_2}$	mass	,
Oxygen Fluorine				g, mg g/mL
		F_2	density Amount of substance	
Bromine		Br ₂		Mole, particles (atoms or molecules)
Iodine		I ₂	Pressure	atm, psi, mm Hg, torr, Pa, kPa
Nitrogen		N_2	Heat	Calories, joules
Chlorine		Cl_2		
Metric	· Prefixes		Other pertine	nt information
1 km =	1000 m		Copper compounds	bluish in color
100 cm =	1 m		(aq)	aqueous (dissolved
1000 mm =	1 m			in water)
			(1)	pure liquid
			solute	gets dissolved
			solvent	does the dissolving
			solution	solute + solvent
			NaOH	Sodium hydroxide
			Atomic #	# of protons (whole
				# on P.T.)
			Mass #	Protons + neutrons
			Isotope	Same # of protons;
			Lotopo	different # of
				neutrons (i.e. Li-6
				and Li-7)
			Atomic mass	Average mass of all
			TXOIIIC IIId55	isotopes (decimal # on P.T.)

- indicates the sections that you will need to know for the ELEMENTary knowledge quiz

Group #	# of valence electrons	Bonding Types Metallic (Metals only)	Dissolves, conducts dry
		<i>Ionic</i> (Metal/Nonmetal)	Dissolves, conducts only when dissolved
		Molecular Covalent (nonmetals; usually liquid or gas or soft solid)	Usually dissolves, does not conduct dry nor dissolved
		<i>Covalent Network</i> (nonmetals; hard solids)	Does not dissolve, does not conduct
Period #	# of shells (or energy levels)	Ion Charges Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8	+1 (loses 1 e ⁻) +2 (loses 2 e ⁻) +3 (loses 3 e ⁻) +4/-4/0 -3 (gains 1 e ⁻) -2 (gains 2 e ⁻) -1 (gains 1 e ⁻) 0 (loses/gains none)
<u>Group names</u> Group 1 Group 2 Group 7 Group 8	Alkali metals Alkaline earth metals Halogens Noble gases	Naming compounds Ionic Covalent	End in –ide, -ate, or – ite (do NOT use prefixes!) End in –ide, must USE prefixes (mono, di, tri, etc.)
d-block	Transition metals	Writing Formulas from names Ionic	Criss-cross charges
Atomic Radius (size)	Trend: Across a period, atoms get bigger Down a group, atoms get bigger (He is smallest; Fr is largest)	Covalent	(or draw pictures of valence electrons) Use prefixes
Flame Test Strontium (Sr) Potassium (K) Copper (Cu) Sodium (Na)	Red Pink Green Yellow/orange	Organic molecule	Contains carbon (organic molecules often contain H and O as well)
Atomic Spectrum	Fingerprint of atom	Name endings -one -ine -ate -ic acid -ol	Smell Minty Fishy Sweet Putrid Camphor
SiO ₂	Sand	HONC 1234	Rule to figure out the # of bonds

Lewis dot symbol Ex: • C• Functional Group Ester Carboxylic acid	Group # = # of val. e = # of dots (unpaired dots are "open spots" available for bonding—tip: 8-group # = # of bonds)	electronegativity	The ability of an atom to attract bonded electrons to itself Trend: increases to the upper right (F is most; Fr is least) Contains <i>partially</i> positive and <i>partially</i> negative ends $\delta+H-F\delta-$ \rightarrow
Ketone		Nonpolar covalent	Electronegativity difference: 0 to 0.45
Amine Alcohol		Polar covalent	Electronegativity difference: between 0.45 and 2.0
<mark>Aldehyde</mark>		Ionic	Electronegativity difference: greater than 2.0
Carboxylic acid + alcohol	\rightarrow ester + H ₂ O	Polar molecule	If molecule contains a dipole moment (assymetrical shape)
catalyst	Speeds up reaction (but not consumed in the reaction)	Intermolecular Forces (IMF's) Van der Waals (AKA	Nonpolar molecules
<u>VSEPR Theory</u> 4 domains (0 lone pairs)	Geometry Shape Tetrahedral Tetra- hedral	London Dispersion Forces) weakest result from induced dipoles	ONLY contain these IMF's (but ALL molecules contain these IMF's) Ex: CH ₄ and hexane
4 domains (1 lone pair)	Tetrahedral <mark>pyra-</mark> midal	Dipole-Dipole Interactions	Polar molecules contain these (in
4 domains (2 lone pairs)	Tetrahedral <mark>bent</mark>	medium strength result from permanent dipoles	addition to London dispersion forces) Ex: HCl
4 domains (3 lone pairs)	Tetrahedral linear Trigonal trigonal	Hydrogen bonding strongest	Polar molecules containing H
3 domains (0 lone pairs)	Trigonal <mark>trigonal</mark> Planar <mark>planar</mark>	results from a very, very strong dipole- dipole interaction	bonded to N, O, or F contain these (+ London Dispersion)
2 domains (0 lone)	linear linear		Ex: H_2O and NH_3

MINOH e o o x y t n n yd a s m g r l p e eo s o t ng l a e y l n	Method to balance equations the quickest	To predict how to get the most product out Stoichiometry mass to mass steps	Get mol ratio of reactants from balanced eqn⇒mix reactants in that ratio. Step 1: P.T. Bridge Step 2: mol ratio (name
S			changes) Step 3: P.T. Bridge
Reaction Types Synthesis Decomposition Single replacement Double replacement Combustion	elem. + elem. \rightarrow cpd cpd \rightarrow elem. + elem. A + BC \rightarrow AC + B AB + CD \rightarrow BC + AD $C_xH_y + O_2 \rightarrow CO_2 + H_2O$ (Hint: when metal bonds to nonmetal, criss-cross to get formula. Also, when an element is formed, don't forget HOFBrINCI)	General Stoichiometry Steps	Step 1: Convert to moles moles $g \rightarrow mol (P.T.)$ particles→mol (6.02x10 ²³) MxL→mol (triangle) Step 2: Use mol ratio (name changes) Step 3: convert from moles mol→g (P.T.) mol→particles (6.02x10 ²³) mol→L (mol/M) triangle mol→M (mol/L) triangle
Lethal dose (LD ₅₀)	Amount of substance required to be lethal to half the population (unit~mg/kg)	% error Acid properties (H ⁺) pH<7	((exp – calc)/calc) x 100 Sour, burns, conducts, reacts with metal (\rightarrow H ₂ gas), litmus paper (b \rightarrow r), universal indicator ("reds")
		Base properties (OH ⁻) pH>7	Bitter, slippery, conducts, no rxn with metal, litmus paper $(r\rightarrow b)$, universal indicator ("blues")
2.2 lb	= 1 kg	Arrhenius Acid	Dissociates \rightarrow H ⁺
Molar mass (g/mol)	1 mol = P.T. grams	Arrhenius Base	Dissociates $\rightarrow OH^{-}$
Convenient counting unit for atoms/molecules (Avogadro's #)	$1 \text{ mol} = 6.02 \times 10^{23}$ particles (atoms or molecules)	Bronsted-Lowry Acid (H ⁺ donor)	Reacts w/H ₂ O \rightarrow H ₃ O ⁺
Mole conversions (Mole Island)		Bronsted-Lowry Base (H ⁺ acceptor)	Reacts w/H ₂ O \rightarrow OH ⁻
Molarity Triangle		ACIDS	Contain H in front Name ends in "-ic acid"
	Tip: To convert from mL	BASES	Contain OH (w/metal) or amine (N) Name ends in "hydroxide" or "-ine"
	to $L \rightarrow move dec. 3 places$ to the left	Acids become	conjugate bases (by donating protons)
Dilution Equation	$M_1L_1 = M_2L_2$ (Solving for L_1 when	Bases become	conjugate acids (by accepting protons)
	trying to figure out how much of the original bottle you need to pour out.)	Phenolphthalein (acid/base indicator) Neutralization reaction (a double replacement rxn)	Clear if acid (or neutral) Pink if base Acid + base \rightarrow salt + H ₂ O
LeChatlier's Principle	If a disturbance is applied to a system at equilibrium, the system will "undo" the stress (by shifting)	Physical change	(criss-cross to get salt) Changes form but not identity (i.e. phase changes)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(for 2°F)
$\begin{array}{ c c c c c c } \hline d\downarrow & & & & & & & & & & & & & & & & & & $	(for 2°F)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(for 2°F)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(for 2°F)
V\$ d\$)Molecules slown down→attract→ condenseExothermicHeat is releasedAbsolute Zero (0K or -273°C)No motion (and V = 0) condenseExothermicHeat is releasedTemperature conversionsK = °C + 273 °C = K - 273EndothermicHeat is absorbedPressure conversions \downarrow 1 atm = 760 mm Hg (measure of KE _{avp})Melting/boiling/subliming depositionEndothermic process4 variables when dealing with gasesn, P, V, T (n~amount of gas in moles)Melting point equalsFreezing point (for 	(for 2°F)
As temp. \downarrow Molecules slown down→attract→ condenseMolecules slown down→attract→ 	(for 2°F)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(for 2°F)
condensecondenseAbsolute Zero (0K or -273°C)No motion (and V = 0) FamperatureExothermicHeat is released Heat is absorbedTemperature conversionsK = °C + 273 °C = K - 273Endothermic Heat is absorbedHeat is absorbed 	(for 2°F)
Absolute Zero (0K or -273°C)No motion (and V = 0)ExothermicHeat is releasedTemperature conversionsK = °C + 273 °C = K - 273EndothermicHeat is absorbedPressure 	(for 2°F)
(0K or -273°C)K = °C + 273 °C = K - 273EndothermicHeat is absorbedTemperature conversions°C = K - 273EndothermicHeat is absorbed $\stackrel{?}{\downarrow}$ 1 atm = 760 mm HgMelting/boiling/sublimingEndothermic process $\stackrel{?}{\downarrow}$ n, P, V, TMelting point equalsExothermic process4 variables when dealing with gasesn, P, V, T 	(for 2°F)
Temperature conversions $K = ^{\circ}C + 273$ $^{\circ}C = K - 273$ EndothermicHeat is absorbedPressure collisions1 atm = 760 mm HgMelting/boiling/sublimingEndothermic processTemperature of gasRelated to speed of gas 	(for 2°F)
conversions $^{\circ}C = K - 273$ Melting/boiling/sublimingEndothermic processPressure conversions1 atm = 760 mm HgMelting/boiling/sublimingEndothermic process \downarrow \downarrow Pressure conversions1 atm = 760 mm HgMelting/boiling/sublimingEndothermic processTemperature of gasRelated to speed of gas (measure of KEavg)Freezing/condensation/ depositionExothermic process4 variables when dealing with gasesn, P, V, T 	(for 2°F)
Pressure \downarrow I atm = 760 mm HgMelting/boiling/sublimingEndothermic processCollisionsRelated to speed of gas (measure of KEavg)Freezing/condensation/ depositionExothermic process4 variables when dealing 	(for 2°F)
$\begin{array}{c} \downarrow \\ collisions \\ \hline \ \ collisions \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	water: (for 2°F)
Temperature of gasRelated to speed of gas (measure of KEavg)Freezing/condensation/ depositionExothermic process4 variables when dealing with gasesn, P, V, T (n~amount of gas in moles)Melting point equalsFreezing point (for $0^{\circ}C \text{ or } 32^{\circ}F$)P and VInversely proportional $P \alpha 1/V$ Boiling point equalsCondensation point water: 100°C or 212P and TDirectly proportional $P \alpha T$ Sublimation point equalsDeposition point 	water: (for 2°F)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(for 2°F)
4 variables when dealing with gasesn, P, V, T (n~amount of gas in moles)Melting point equalsFreezing point (for $0^{\circ}C \text{ or } 32^{\circ}F$)P and VInversely proportional P α 1/VBoiling point equalsCondensation point water: 100°C or 212P and TDirectly proportional P α TSublimation point equalsDeposition point equalsV and TDirectly proportional V α TLeChatlier's Principle 	(for 2°F)
with gases(n~amount of gas in moles) $0^{\circ}C \text{ or } 32^{\circ}F$)P and VInversely proportional P α 1/VBoiling point equalsCondensation point water: 100°C or 212P and TDirectly proportional 	(for 2°F)
IntersectionIntersectionIntersectionIntersectionP and VInversely proportional $P \alpha 1/V$ Boiling point equalsCondensation point water: 100°C or 212P and TDirectly proportional $P \alpha T$ Sublimation point equalsDeposition point 	2°F) stem at
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2°F) stem at
P α 1/Vwater: 100°C or 212P and TDirectly proportional P α TSublimation point equals Directly proportional V and TDeposition pointV and TDirectly proportional V α TLeChatlier's Principle (dealing with temperature stresses)If the temp. of a sys 	2°F) stem at
P and T Directly proportional P α T Sublimation point equals Deposition point V and T Directly proportional V α T LeChatlier's Principle (dealing with temperature stresses) If the temp. of a system to restore equilibriu to restore equilibriu	tem at
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
V and TDirectly proportional V α TLeChatlier's Principle (dealing with temperature stresses)If the temp. of a sys equ. is changed, it v to restore equilibriu	
V α T (dealing with temperature stresses) equ. is changed, it was to restore equilibriu	
stresses) to restore equilibriu	cull abift
**Depends on if rxi	
endo or exo	115
Diffusion Gases collide while Phase changes are Processes at equil	ibrium
moving through a room	
Directly Proportional Ratio is constant Specific Heat Capacity, c The amount of he	
required to increa	
of a substance's to	emp.
by 1°C	
$C_{H2O(s)} = 0.5 \text{ cal/g}$	
$C_{H2O(I)} = 1 \text{ cal/g}^{\circ}C$	
$C_{H2O(g)} = 0.45 \text{ cal}$	g°C
Inversely ProportionalProduct is constantAs $c \downarrow$ Heats up quickerImage: Charles A state of the stat	
Charles' Law $\frac{V_1}{T_1} = \frac{V_2}{T_2} \text{ (T~Kelvin!)} \qquad 1 \text{ calorie} \qquad 4.184 \text{ J}$	
$\frac{1}{T_{c}} = \frac{1}{T_{c}} (1 - \text{Kervin}!)$	
	ot
Gay-Lussac's Law $P_1 = P_2 / T_2$ (T~Kelvin!)Latent Heat of Fusion, L_f The amount of here required to melt p gram ($L_{f,H20}$ =80ca	
$T_1 = T_2$ (1-Keiving) gram (L _{f,H20} =80cs	
Boyle's Law $P_1V_1 = P_2V_2$ Latent Heat ofThe amount of he	
$\begin{array}{c} \text{Label and of } \\ \text{Vaporization, } L_v \end{array} \qquad $	
$\operatorname{gram}(L_{v,H2O}=540)$	
$\frac{1}{1} \frac{1}{1} = \frac{1}{2} \frac{1}{2} \frac{1}{2} (T \sim \text{Kelvin})$	
Combined Gas Law $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ (T~Kelvin)Heat transfer due to ΔT $q = mc\Delta T$ Dalton's Law of Partial $P_T = P_1 + P_2 + P_3 + \dots$ Heat transfer due to phase $q = mL_f$	
Dalton's Law of Partial $P_T = P_1 + P_2 + P_3 + \dots$ Heat transfer due to phase $q = mL_f$	
Pressures change $q = mL_v$	
LeChatlier's Principle If P is increased, the system Standard Temperature 0°C and 1 atm	
(dealing with pressure will shift to decrease the and Pressure (STP) (273 K and 760 m	ım Hg)
stresses) pressure (towards less moles	
of gas) *Note: if placed in a smaller	
container $(\nabla \downarrow)$, system will	
shift to decrease pressure	ſ
(less gas) and vice versa	ſ

Molar Volume Mole Island with Molar Volume	1 mole = 22.4 L (at STP) = 6.02x10 ²³ particles (gases with same volume contain same # of particles, regardless of size of particles)	Food does not "contain" calories; Nutrition Facts tells how much Calories will be <u>given off</u> when the food is burned (we slowly "burn" food when we breathe in O ₂) Combustion reaction	Fuels are characterized by cal/g because fuel sizes are not all the same size (i.e. cheetos are not all the same size) Releases heat and light (light can be flame or glow)
Percent Composition (indicates what percentage of each atom makes up the entire compound)	Ex: H ₂ O % H: (2g/18g)x100=11% % O: (16g/18g)x100=89%	Heat released by system	= heat absorbed by surroundings (and vice versa)
Accuracy vs Precision	Accuracy is how close to the true value a measurement is. Precision is the repeatability of a measurement. (An instrument can be precise but not accurate)	Types of substances that DO COMBUST	(1) Metals (ex: Na + O ₂ \rightarrow Na ₂ O) *Tarnishing of metals to produce metal oxides are combustión rxns) (2) Carbon compounds that don't contain too much oxygen already (ex: C ₂ H ₅ OH + O ₂ \rightarrow CO ₂ + H ₂ O)
Significant Figures (indicate precision of a measurement) *Measurements should contain the digits you are certain of plus ONE more estimated digit. *The more markings an instrument has, the	Atlantic-Pacific Rule: (1) If the dec. pt. is Absent, start on the Atlantic side of the number, go to the first NONZERO digit, and count the # of digits all the way through including zeros (ex: 102,000 has 3	Types of substances that DO NOT COMBUST (1) Ionic cpds	(2) Compounds that have too much oxygen already (ex: CO ₂ and H ₂ O)
higher the precision, the more sig figs the measurement will have	sig figs and 10 has 1 sig fig) (2) If the dec. pt. is	Alkane	C _x H _y compound
	Present, start on the Pacific side of the number, etc. (ex: 1.020 has 4 sig figs and 0.020 has 2 sig figs)	As size of alkane increases	Amount of reacted oxygen and heat released increases
Significant Figures and Calculations (When using measurements in calculations, your calculation cannot be more precise than your least precise	When multiplying/dividing: Your calculation needs to have the least # of sig figs (ex: 0.2g/2.3mL = 0.09 g/mL) When adding/subtracting: Your calculation needs to	Band of Stability (indicates proton to neutron ratio that allows nucleus to be stable)	When isotopes lie on this band, they are stable. When they lie outside of this band, they are unstable and undergo radioactive decay. Below the band (too many protons): alpha decay
measurement!)	have the least # of decimal places (ex: 34.50mL - 33.7 mL = 0.8 mL)		Above the band (too many neutrons): beta decay
Fire Triangle	Fire requires: O ₂ , fuel, ignition source	Nuclear Decay	Alpha decay: alpha particle $\binom{4}{2}He$) is emitted
Calorimetry	Measurement of the amount of heat transferred.		Beta decay: beta particle
1 (food) Cal	= 1000 (chemist) cal		$\begin{pmatrix} 0\\-1 \end{pmatrix}$ is emitted

Nuclear Equations	Alpha Decay Example ${}^{226}_{88}Ra \rightarrow {}^{4}_{2}He + {}^{222}_{86}Rn$ Tip: The daughter isotope is 2 places back on the Per. Table from the parent isotope (see that Rn is 2 places back from Ra on the P.T.) Beta Decay Example ${}^{47}_{20}Ca \rightarrow {}^{0}_{-1}e + {}^{47}_{21}Sc$ Tip: The daughter isotope is 1 place forward on the Per. Table from the parent isotope (see that Sc is one place in front of Ca on the P.T.)	
Penetration Strength of Nuclear Decay	Alpha Particles: least penetrating (least dangerous) <u>Beta Particles:</u> very penetrating (very dangerous) <u>Gamma rays</u> : (most penetrating (most dangerous)	