KEY CONCEPT
Photosynthesis requires a series of chemical reactions.
The first stage of photosynthesis captures and transfers energy.

- The light-dependent reactions include groups of molecules called photosystems.
4.3 Photosynthesis in Detail

- Photosystem II captures and transfers energy.
 - Chlorophyll absorbs energy from sunlight.
 - Energized electrons enter the electron transport chain.
 - Water molecules are split.
 - Oxygen is released as waste.
 - Hydrogen ions are transported across the thylakoid membrane.
4.3 Photosynthesis in Detail

- Photosystem I captures energy and produces energy-carrying molecules.
 - chlorophyll absorbs energy from sunlight
 - energized electrons are used to make NADPH
 - NADPH is transferred to light-independent reactions
4.3 Photosynthesis in Detail

- The light-dependent reactions produce ATP.
 - hydrogen ions flow through a channel in the thylakoid membrane
 - ATP synthase attached to the channel makes ATP
The second stage of photosynthesis uses energy from the first stage to make sugars.

- Light-independent reactions occur in the stroma and use CO$_2$ molecules.

Light-independent reactions take place in the stroma.
4.3 Photosynthesis in Detail

- A molecule of glucose is formed as it stores some of the energy captured from sunlight.
 - carbon dioxide molecules enter the Calvin cycle
 - energy is added and carbon molecules are rearranged
 - a high-energy three-carbon molecule leaves the cycle
4.3 Photosynthesis in Detail

- A molecule of glucose is formed as it stores some of the energy captured from sunlight.
 - two three-carbon molecules bond to form a sugar
 - remaining molecules stay in the cycle