8.3 Relative Rates of Growth
QUESTION?????

Does $y = 2^x$ grow faster or slower than $y = x^2$?

How could you decide?

<table>
<thead>
<tr>
<th>X</th>
<th>Y₁</th>
<th>Y₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>49</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>10000</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td></td>
</tr>
</tbody>
</table>

$X = 100$
The function $y = e^x$ grows very fast. We could graph it on the chalkboard: If x is 3 inches, y is about 20 inches:

![Graph showing exponential growth]

At 64 inches, the y-value would be at the edge of the known universe! (13 billion light-years)

At $x = 10$ inches, $y = \frac{1}{3}$ mile

At $x = 44$ inches, $y = 2$ million light-years

Let’s put rates of growth into perspective….
The function $y = \ln x$ grows **very** slowly. If we graph it on the chalkboard it looks like this:

By the time we reach the edge of the universe again (13 billion light-years) the chalk line will only have reached 64 inches!

We would have to move 2.6 **miles** to the right before the line moves a foot above the x-axis!

The function $y = \ln x$ increases everywhere, even though it increases extremely slowly.
Try This

For $y = \ln x$, what value of x will give you $y \approx 13$?

$x \approx 445,000$

That’s really slooooww
Definitions: Faster, Slower, Same-rate Growth as \(x \to \infty \)

Let \(f(x) \) and \(g(x) \) be positive for \(x \) sufficiently large.

1. \(f \) grows faster than \(g \) (and \(g \) grows slower than \(f \)) as \(x \to \infty \) if

\[
\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty \quad \text{or} \quad \lim_{x \to \infty} \frac{g(x)}{f(x)} = 0
\]

2. \(f \) and \(g \) grow at the same rate as \(x \to \infty \) if

\[
\lim_{x \to \infty} \frac{f(x)}{g(x)} = L \neq 0
\]
WARNING

Please temporarily suspend your common sense.
According to this definition, $y = 2x$ does not grow faster than $y = x$.

The book says that "f grows faster than g" means that for large x values, g is negligible compared to f.

"Grows faster" is not the same as "has a steeper slope"!

Since this is a finite non-zero limit, the functions grow at the same rate!
Which grows faster, e^x or x^2?

\[
\lim_{x \to \infty} \frac{e^x}{x^2}
\]

\[
\lim_{x \to \infty} \frac{e^x}{2x}
\]

\[
\lim_{x \to \infty} \frac{e^x}{2} = \infty
\]

e^x grows faster than x^2.

We can confirm this graphically:

\[y = \frac{e^x}{x^2}\]
“Growing at the same rate” is transitive.

In other words, if two functions grow at the same rate as a third function, then the first two functions grow at the same rate.
Example 4:

Show that \(f(x) = \sqrt{x^2 + 5} \) and \(g(x) = (2\sqrt{x} - 1)^2 \) grow at the same rate as \(x \to \infty \).

Let \(h(x) = x \)

\[
\lim_{x \to \infty} \frac{\sqrt{x^2 + 5}}{x} = \lim_{x \to \infty} \frac{\sqrt{x^2 + 5}}{\sqrt{x^2}} = \lim_{x \to \infty} \sqrt{\frac{x^2}{x^2} + \frac{5}{x^2}} = \lim_{x \to \infty} \sqrt{1 + \frac{5}{x^2}} = 1
\]

\[
\lim_{x \to \infty} \frac{(2\sqrt{x} - 1)^2}{x} = \lim_{x \to \infty} \frac{(2\sqrt{x} - 1)^2}{(\sqrt{x})^2} = \lim_{x \to \infty} \left(\frac{2\sqrt{x}}{\sqrt{x}} - \frac{1}{\sqrt{x}} \right)^2 = 4
\]

\[
\lim_{x \to \infty} \frac{f}{g} = \lim_{x \to \infty} \left(\frac{f}{h} \cdot \frac{h}{g} \right) = 1 \cdot \frac{1}{4} = \frac{1}{4}
\]

\(f \) and \(g \) grow at the same rate.
Definition f of Smaller Order than g

Let f and g be positive for x sufficiently large. Then f is of smaller order than g as $x \to \infty$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

We write $f = o(g)$ and say “f is little-oh of g.”

Saying $f = o(g)$ is another way to say that f grows slower than g.
Order and Oh-Notation

Definition \(f \) of at Most the Order of \(g \)

Let \(f \) and \(g \) be positive for \(x \) sufficiently large. Then \(f \) is of at most the order of \(g \) as \(x \to \infty \) if there is a positive integer \(M \) for which

\[
\frac{f(x)}{g(x)} \leq M \quad \text{for } x \text{ sufficiently large}
\]

We write \(f = O(g) \) and say “\(f \) is big-oh of \(g \).”

Saying \(f = O(g) \) is another way to say that \(f \) grows no faster than \(g \).