In the photograph of the tennis court, the angle the sideline makes with the service line is the same as the angle it makes with the base line.

This photograph illustrates a postulate about angles and parallel lines.

POSTULATE 8

Corresponding Angles Postulate

Words If two parallel lines are cut by a transversal, then corresponding angles are congruent.

Symbols If \(j \parallel k \), then the following are true:

\[
\angle 1 \cong \angle 5 \quad \angle 2 \cong \angle 6 \\
\angle 3 \cong \angle 7 \quad \angle 4 \cong \angle 8
\]

EXAMPLE 1 Find Measures of Corresponding Angles

Find the measure of the numbered angle.

Solution

a. \(m\angle 6 = 60^\circ \)

b. \(m\angle 5 = 135^\circ \)

c. \(m\angle 2 = 90^\circ \)
Find the measure of the numbered angle.

1. 120°

2. 145°

3. 45°

THEOREM 3.5

Alternate Interior Angles Theorem

Words If two parallel lines are cut by a transversal, then alternate interior angles are congruent.

Symbols If $j \parallel k$, then the following are true:

\[
\angle 3 \equiv \angle 6 \\
\angle 4 \equiv \angle 5
\]

EXAMPLE 2 Find Measures of Alternate Interior Angles

Find the measure of $\angle PQR$.

a. $m\angle PQR = 35^\circ$

b. $m\angle PQR = 120^\circ$

c. $m\angle PQR = 70^\circ$

Find the measure of the numbered angle.

4. 4

5. $5 \ 65^\circ$

6. $6 \ 100^\circ$
THEOREM 3.6

Alternate Exterior Angles Theorem

Words If two parallel lines are cut by a transversal, then alternate exterior angles are congruent.

Symbols If \(j \parallel k \), then the following are true:

\[
\angle 1 \cong \angle 8 \\
\angle 2 \cong \angle 7
\]

EXAMPLE 3 Find Measures of Alternate Exterior Angles

Find the measures of \(\angle 1 \) and \(\angle 2 \).

Solution

The measure of \(\angle 2 \) is 75° because alternate exterior angles are congruent. The measure of \(\angle 2 \) can be used to find the measure of \(\angle 1 \).

\[
m\angle 1 + m\angle 2 = 180^\circ \\
m\angle 1 + 75^\circ = 180^\circ \\
m\angle 1 + 75^\circ - 75^\circ = 180^\circ - 75^\circ \\
m\angle 1 = 105^\circ
\]

Student Help

Look Back
To review linear pairs, see p. 75.

Checkpoint Use Angle Relationships

Find the measure of the numbered angle.

7. \(130^\circ \)

8. \(92^\circ \)

9.

Use the diagram below. Tell whether the angles are congruent or not congruent. Explain.

10. \(\angle 1 \) and \(\angle 8 \)
11. \(\angle 3 \) and \(\angle 4 \)
12. \(\angle 4 \) and \(\angle 2 \)
13. \(\angle 2 \) and \(\angle 7 \)
14. \(\angle 3 \) and \(\angle 7 \)
15. \(\angle 3 \) and \(\angle 8 \)
THEOREM 3.7

Same-Side Interior Angles Theorem

Words If two parallel lines are cut by a transversal, then same-side interior angles are supplementary.

Symbols If $j \parallel k$, then the following are true:

\[\angle 3 + \angle 5 = 180^\circ \]
\[\angle 4 + \angle 6 = 180^\circ \]

EXAMPLE 4 Find Measures of Same-Side Interior Angles

Find the measure of the numbered angle.

a.

\[\angle 5 = 80^\circ \]
\[\angle 6 = 6^\circ \]

Solution

\[\angle 5 + 80^\circ = 180^\circ \]
\[\angle 5 = 100^\circ \]

b.

\[\angle 6 = 130^\circ \]
\[\angle 5 = 50^\circ \]

EXAMPLE 5 Use Algebra with Angle Relationships

Find the value of x.

\[(x + 15)^\circ = 125^\circ \]

Solution

\[x + 15 = 125 \]
\[x = 110 \]

Checkpoint Use Algebra with Angle Relationships

Find the value of x.

16. \[(x + 35)^\circ \]
17. \[(x - 2)^\circ \]
18. \[(2x + 10)^\circ \]
3.4 Exercises

Guided Practice

Vocabulary Check

Tell whether the angles are corresponding angles, alternate interior angles, alternate exterior angles, same-side interior angles, or none of these.

1. \(\angle 1 \) and \(\angle 5 \)
2. \(\angle 5 \) and \(\angle 4 \)
3. \(\angle 2 \) and \(\angle 8 \)
4. \(\angle 6 \) and \(\angle 2 \)
5. \(\angle 3 \) and \(\angle 6 \)
6. \(\angle 7 \) and \(\angle 3 \)
7. \(\angle 4 \) and \(\angle 7 \)
8. \(\angle 8 \) and \(\angle 3 \)

Skill Check

What postulate or theorem justifies the statement?

9. \(\angle 10 \cong \angle 15 \)
10. \(\angle 12 \cong \angle 13 \)
11. \(m \angle 11 + m \angle 13 = 180^\circ \)
12. \(\angle 9 \cong \angle 13 \)

13. **Logical Reasoning** Two parallel lines are cut by a transversal so that one of the angles formed is a right angle. What can you say about the measures of all the other angles? Explain.

Practice and Applications

Extra Practice

See p. 679.

Visualize It! Draw two parallel lines. Use a protractor to draw a transversal so that one of the angles has the given measure. Measure all the angles and write the angle measures on your drawing.

14. \(135^\circ \)
15. \(60^\circ \)

Homework Help

Example 1: Exs. 16–18
Example 2: Exs. 19–21, 25
Example 3: Exs. 22–24
Example 4: Exs. 29–31
Example 5: Exs. 32–37

Corresponding Angles Find the measure of the numbered angle.

16. \(\angle 110^\circ \)
17. \(\angle 2 \)
18. \(\angle 50^\circ \)
Alternate Interior Angles Find the measure of the numbered angle.

19. \[\text{Angle 1} \] 37°

20. \[127° \]

21. \[94° \]

Alternate Exterior Angles Find the measure of \(\angle ABC \).

22. \[\text{Angle } A \]

23. \[\text{Angle } B \]

24. \[\text{Angle } C \]

25. Rainbows When sunlight enters a drop of rain, different colors leave the drop at different angles. For red light, \(m\angle 2 = 42° \). What is \(m\angle 1 \)? Explain.

Logical Reasoning Find \(m\angle 1 \) and \(m\angle 2 \). Explain your reasoning.

26. \[\text{Angle 1} \] 135°

27. \[\text{Angle 2} \] 82°

28. \[\text{Angle 1} \] 118°

Same-Side Interior Angles Find the measure of the numbered angle.

29. \[\text{Angle 1} \] 49°

30. \[\text{Angle 2} \] 77°

31. \[\text{Angle 3} \] 104°

Using Algebra Find the value of \(y \).

32. \[70° + 2\gamma \]

33. \[115° + 5\gamma \]

34. \[120° + 6\gamma \]
Using Algebra Find the value of \(x \).

35. \((5x - 24)° \)
36. \((13x - 5)° \)
37. \(7(x - 7)° \)

38. **Physical Therapy** Sports physicians and physical therapists use a tool called a *goniometer* to measure range of motion.

In the diagram, \(\overline{BA} \parallel \overline{ED} \) and \(\overline{BC} \parallel \overline{EF} \). Use the blue transversal to explain why \(\angle ABC \equiv \angle DEF \).

Error Analysis A student has written some angle measures incorrectly. Copy the diagram and correct the errors.

39.

40.

Standardized Test Practice

41. **Multiple Choice** Which statement is false?
 - \(A \) \(m\angle 2 + m\angle 5 = 180° \)
 - \(B \) \(m\angle 5 + m\angle 6 = 180° \)
 - \(C \) \(m\angle 6 + m\angle 7 = 180° \)
 - \(D \) \(m\angle 3 + m\angle 8 = 180° \)

42. **Multiple Choice** Which statement about the diagram above is true?
 - \(E \) \(\angle 2 \equiv \angle 4 \)
 - \(G \) \(\angle 5 \equiv \angle 7 \)
 - \(H \) \(\angle 3 \equiv \angle 8 \)
 - \(J \) \(\angle 6 \equiv \angle 3 \)
Mixed Review

Identifying Line Relationships Fill in the blank with parallel, perpendicular, or skew. (Lesson 3.1)

43. Line \(j \) and line \(k \) are __ ? __.
44. Line \(j \) and line \(m \) are __ ? __.
45. Line \(k \) and line \(m \) are __ ? __.
46. Line \(m \) appears __ ? __ to plane \(B \).

Studying Angles List all pairs of angles that fit the description. (Lesson 3.3)

47. corresponding
48. alternate interior
49. alternate exterior
50. same-side interior

Algebra Skills

Solving Equations Solve the equation. (Skills Review, p. 673)

51. \(3y - 4 = 20 \)
52. \(4 - 6p = 2p - 3 \)
53. \(75 + 7x = 2x \)
54. \(14r + 81 = -r \)
55. \(12s - 5 = 7s \)
56. \(5(z + 3) = 12 \)

Quiz 2

Use the diagram to describe the relationship between the pair of angles. (Lesson 3.3)

1. \(\angle 1 \) and \(\angle 8 \)
2. \(\angle 4 \) and \(\angle 6 \)
3. \(\angle 6 \) and \(\angle 2 \)
4. \(\angle 2 \) and \(\angle 7 \)
5. \(\angle 4 \) and \(\angle 5 \)
6. \(\angle 3 \) and \(\angle 6 \)

Find the measures of \(\angle 1 \) and \(\angle 2 \). (Lesson 3.4)

7. \(\angle 1 \) \(104^\circ \)
8. \(\angle 1 \) \(78^\circ \)
9. \(\angle 1 \) \(107^\circ \)

Find the value of \(x \). (Lesson 3.4)

10. \(87^\circ \) \((4x + 3)^\circ \)
11. \(115^\circ \) \(5(x - 3)^\circ \)
12. \(53^\circ \) \((5x - 2)^\circ \)