Algebra 1 Chapter 10 Review

Multiple Choice
Identify the choice that best completes the statement or answers the question.

Simplify the radical expression.

____ 1. \(\sqrt{144}\)
 a. 12 b. 12\(\sqrt{2}\) c. 6 d. 4\(\sqrt{6}\)

Simplify the radical expression by rationalizing the denominator.

____ 2. \(\frac{4}{\sqrt{21}}\)
 a. \(\frac{4\sqrt{21}}{21}\) b. 4\(\sqrt{21}\) c. 21\(\sqrt{4}\) d. \(\frac{\sqrt{441}}{21}\)

____ 3. A square garden plot has an area of 24 ft\(^2\).
 a. Find the length of each side in simplest radical form.
 b. Calculate the length of each side to the nearest tenth of a foot.
 a. \(\frac{\sqrt{24}}{2}\); 2.45 ft c. \(\frac{24}{4}\); 6 ft
 b. 2\(\sqrt{6}\); 4.9 ft d. \(\sqrt{24}\); 5 ft

Find the length of the missing side. If necessary, round to the nearest tenth.

____ 4.

\[
\begin{align*}
5 & \quad c \\
14 &
\end{align*}
\]

a. 361 b. 19 c. 38 d. 14.9

Determine whether the given lengths can be sides of a right triangle.

____ 5. 18 m, 24 m, 30 m
 a. no b. yes

____ 6. 7 cm, 40 cm, 41 cm
 a. no b. yes
Determine whether the following statement is sometimes, always, or never true.

7. Two consecutive positive integers form part of a Pythagorean triple.
 a. never b. always c. sometimes

Simplify the expression.

8. \(\sqrt{6} + 2\sqrt{6}\)
 a. \(3\sqrt{6}\) b. \(-\sqrt{6}\) c. \(3\sqrt{12}\) d. \(-\sqrt{12}\)

9. \(4\sqrt{7} + 8\sqrt{63}\)
 a. \(76\sqrt{7}\) b. \(12\sqrt{63}\) c. \(28\sqrt{7}\) d. \(28\sqrt{63}\)

10. \((6 - \sqrt{11})(6 + \sqrt{11})\)
 a. \(36 + \sqrt{11}\) c. \(-85\)
 b. \(47 + 12\sqrt{11}\) d. 25

11. \(\frac{8}{\sqrt{6} - \sqrt{3}}\)
 a. \(8\sqrt{6} - 8\sqrt{3}\) c. \(\frac{8\sqrt{6} + 8\sqrt{3}}{27}\)
 b. \(\frac{8}{\sqrt{6} + \sqrt{3}}\) d. \(\frac{8\sqrt{6} + 8\sqrt{3}}{3}\)

12. \(\frac{\sqrt{2} + \sqrt{6}}{\sqrt{8} + \sqrt{6}}\)
 a. \(\frac{\sqrt{12} + 6 - \sqrt{16} - \sqrt{48}}{-2}\) c. \(\frac{\sqrt{8}}{\sqrt{14}}\)
 b. \(\sqrt{3} - 1\) d. \(\frac{1}{\sqrt{4}} + 1\)

13. Find an exact solution for \(\frac{\sqrt{5} - 1}{x} = \frac{\sqrt{5}}{2}\). Then find the approximate solution to the nearest tenth.
 a. \(\frac{10 - 2\sqrt{5}}{5}; 1.1\) c. \(-2; -2\)
 b. \(2 - 2\sqrt{5}; -2.5\) d. \(\frac{2\sqrt{5} - 2}{\sqrt{5}}; 1.1\)

14. The formula \(r = \sqrt{\frac{A}{P}} - 1\) gives the interest rate \(r\) that will allow principal \(P\) to grow into amount \(A\) in two years, if the interest is compounded annually. Suppose you have $425 to deposit into an account. Find the interest rate you would need to have $470 in the account at the end of the second year.
 a. 5.2% b. 105% c. 0.052% d. 5.4%
15. Find the exact perimeter of the triangle.

\[\text{a. } 68 \sqrt{x} \quad \text{b. } \sqrt{68x} \quad \text{c. } 5x + x \sqrt{17} \quad \text{d. } 68x \]

Solve the equation. Check your solution.

16. \[4 = \sqrt{m} - 8 \]

\[\text{a. } 6 \quad \text{b. } 144 \quad \text{c. } 2\sqrt{3} \quad \text{d. } 12 \]

17. \[\sqrt{r+5} = 11 \]

\[\text{a. } 126 \quad \text{b. } 6 \quad \text{c. } 17 \quad \text{d. } 116 \]

18. The velocity of sound in air is given by the equation \(v = 20 \sqrt{273 + t} \) where \(v \) is the velocity in meters per second and \(t \) is the temperature in degrees Celsius. Find the temperature when the velocity of sound in air is 369 meters per second. Round to the nearest degree.

\[\text{a. } 507^\circ \quad \text{b. } 6,535^\circ \quad \text{c. } 7,081^\circ \quad \text{d. } 67^\circ \]

Solve the equation. Identify any extraneous solutions.

19. \[w = \sqrt{7w} \]

\[\text{a. } 0 \text{ and } 7 \text{ are solutions of the original equation.} \]
\[\text{b. } 0 \text{ is a solution of the original equation. } 7 \text{ is an extraneous solution.} \]
\[\text{c. } 7 \text{ is a solution of the original equation. } 0 \text{ is an extraneous solution.} \]
\[\text{d. } -7 \text{ is a solution of the original equation. } 0 \text{ is an extraneous solution.} \]

20. The formula \(v = \sqrt{64h} \) can be used to find the velocity \(v \) in feet per second of an object that has fallen \(h \) feet. Find the velocity of an object that has fallen 25 feet. Round your answer to the nearest hundredth.

\[\text{a. } 800 \text{ feet per second} \quad \text{c. } 200 \text{ feet per second} \]
\[\text{b. } 320 \text{ feet per second} \quad \text{d. } 40 \text{ feet per second} \]
21. Graph the function $f(x) = -4 \sqrt{x}$.

 a.
 b.
 c.
 d.

 Short Answer

22. The sales of a certain product after an initial release can be found by the equation $s = 16 \sqrt{3t} + 25$, where s represents the total sales (in thousands) and t represents the time in weeks after release.

 a. Make a table of values.
 b. Graph the function.
 c. Use the graph to estimate the sales 7 weeks after release.
Essay

23. In the diagram \(y = \sqrt{17} \). Use the Pythagorean Theorem to find \(x \). Express \(x \) as a radical expression in simplest form. Show your work.

24. Simplify \(\left(2 \sqrt{5} + 3 \sqrt{7}\right)^2 \). Show your work. Justify each step.

25. Solve \(\sqrt{3x} - 1 = -4 \). Check your solution. If there is no solution, write \textit{no solution}. Show your work.
MULTIPLE CHOICE

1. **ANS:** A **PTS:** 1 **DIF:** L2 **REF:** 10-1 Simplifying Radicals
 OBJ: 10-1.1 Simplifying Radical Expressions Involving Products
 STA: CA A1 2.0 **TOP:** 10-1 Example 1
 KEY: radical expressions | Multiplication Property of Square Roots | square root

2. **ANS:** A **PTS:** 1 **DIF:** L2 **REF:** 10-1 Simplifying Radicals
 OBJ: 10-1.2 Simplifying Radical Expressions Involving Quotients
 STA: CA A1 2.0 **TOP:** 10-1 Example 7
 KEY: radical expressions | rationalize | radicand in the denominator

3. **ANS:** B **PTS:** 1 **DIF:** L3 **REF:** 10-1 Simplifying Radicals
 OBJ: 10-1.1 Simplifying Radical Expressions Involving Products
 STA: CA A1 2.0 **TOP:** 10-1 Example 3
 KEY: word problem | problem solving | radical expressions | multi-part question

4. **ANS:** D **PTS:** 1 **DIF:** L2 **REF:** 10-2 The Pythagorean Theorem
 OBJ: 10-2.1 Solving Problems Using the Pythagorean Theorem
 STA: CA A1 2.0 | CA A1 24.2 **TOP:** 10-2 Example 1
 KEY: Pythagorean Theorem | right triangle

5. **ANS:** B **PTS:** 1 **DIF:** L2 **REF:** 10-2 The Pythagorean Theorem
 OBJ: 10-2.2 Identifying Right Triangles
 STA: CA A1 2.0 | CA A1 24.2 **TOP:** 10-2 Example 3
 KEY: right triangle | converse of the Pythagorean Theorem | converse | Pythagorean Theorem

6. **ANS:** A **PTS:** 1 **DIF:** L2 **REF:** 10-2 The Pythagorean Theorem
 OBJ: 10-2.2 Identifying Right Triangles
 STA: CA A1 2.0 | CA A1 24.2 **TOP:** 10-2 Example 3
 KEY: right triangle | converse of the Pythagorean Theorem | converse | Pythagorean Theorem

7. **ANS:** C **PTS:** 1 **DIF:** L3 **REF:** 10-2 The Pythagorean Theorem
 OBJ: 10-2.1 Solving Problems Using the Pythagorean Theorem
 STA: CA A1 2.0 | CA A1 24.2
 KEY: always sometimes never | Pythagorean Theorem | Pythagorean triple | reasoning

8. **ANS:** A **PTS:** 1 **DIF:** L2 **REF:** 10-3 Operations With Radical Expressions
 OBJ: 10-3.1 Simplifying Sums and Differences
 STA: CA A1 2.0 | CA A1 25.0 **TOP:** 10-3 Example 1
 KEY: like radicals | combining like radicals

9. **ANS:** C **PTS:** 1 **DIF:** L2 **REF:** 10-3 Operations With Radical Expressions
 OBJ: 10-3.1 Simplifying Sums and Differences
 STA: CA A1 2.0 | CA A1 25.0 **TOP:** 10-3 Example 2
 KEY: like radicals | combining like radicals | radical expressions

10. **ANS:** D **PTS:** 1 **DIF:** L2 **REF:** 10-3 Operations With Radical Expressions
 OBJ: 10-3.2 Simplifying Products and Quotients
 STA: CA A1 2.0 | CA A1 25.0 **TOP:** 10-3 Example 4
 KEY: FOIL | radical expressions | Multiplication Property of Square Roots
11. ANS: D PTS: 1 DIF: L3 REF: 10-3 Operations With Radical Expressions
OBJ: 10-3.2 Simplifying Products and Quotients STA: CA A1 2.0 | CA A1 25.0
TOP: 10-3 Example 5 KEY: radical expressions | rationalize | conjugates

12. ANS: B PTS: 1 DIF: L3 REF: 10-3 Operations With Radical Expressions
OBJ: 10-3.2 Simplifying Products and Quotients STA: CA A1 2.0 | CA A1 25.0
TOP: 10-3 Example 5 KEY: conjugates | radical expressions | FOIL | rationalize

13. ANS: A PTS: 1 DIF: L2 REF: 10-3 Operations With Radical Expressions
OBJ: 10-3.2 Simplifying Products and Quotients STA: CA A1 2.0 | CA A1 25.0
TOP: 10-3 Example 6 KEY: radical expressions | rationalize | radical equation | Multiplication Property of Square Roots

14. ANS: A PTS: 1 DIF: L3 REF: 10-3 Operations With Radical Expressions
OBJ: 10-3.2 Simplifying Products and Quotients STA: CA A1 2.0 | CA A1 25.0
KEY: radical equation | word problem | problem solving | Division Property of Square Roots

15. ANS: C PTS: 1 DIF: L4 REF: 10-3 Operations With Radical Expressions
OBJ: 10-3.2 Simplifying Products and Quotients STA: CA A1 2.0 | CA A1 25.0
KEY: Pythagorean Theorem | radical expressions | Multiplication Property of Square Roots

16. ANS: B PTS: 1 DIF: L2 REF: 10-4 Solving Radical Equations
OBJ: 10-4.1 Solving Radical Equations STA: CA A1 2.0 | CA A1 25.2
TOP: 10-4 Example 1 KEY: radical | radical equation | solving equations

17. ANS: D PTS: 1 DIF: L2 REF: 10-4 Solving Radical Equations
OBJ: 10-4.1 Solving Radical Equations STA: CA A1 2.0 | CA A1 25.2
TOP: 10-4 Example 1 KEY: radical | radical equation | solving equations

18. ANS: D PTS: 1 DIF: L2 REF: 10-4 Solving Radical Equations
OBJ: 10-4.1 Solving Radical Equations STA: CA A1 2.0 | CA A1 25.2
TOP: 10-4 Example 2 KEY: radical | radical equation | solving equations | word problem | problem solving

19. ANS: A PTS: 1 DIF: L2 REF: 10-4 Solving Radical Equations
OBJ: 10-4.2 Solving Equations With Extraneous Solutions STA: CA A1 2.0 | CA A1 25.2
TOP: 10-4 Example 4 KEY: solving equations | radical equation | extraneous solutions

20. ANS: D PTS: 1 DIF: L3 REF: 10-4 Solving Radical Equations
OBJ: 10-4.1 Solving Radical Equations STA: CA A1 2.0 | CA A1 25.2
TOP: 10-4 Example 2 KEY: radical equation | word problem | problem solving

21. ANS: B PTS: 1 DIF: L2 REF: 10-5 Graphing Square Root Functions
OBJ: 10-5.1 Graphing Square Root Functions STA: CA A1 17.0
TOP: 10-5 Example 3 KEY: graphing | square root | radical expressions
SHORT ANSWER

22. ANS:
 a.

<table>
<thead>
<tr>
<th>Week</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>87</td>
</tr>
</tbody>
</table>

 b.

 c. about $100,000

PTS: 1 DIF: L3 REF: 10-5 Graphing Square Root Functions
OBJ: 10-5.1 Graphing Square Root Functions
STA: CA A1 17.0
TOP: 10-5 Example 3
KEY: graphing | square root | multi-part question | word problem | problem solving
ESSAY

23. ANS:

$$AC^2 + 1^2 = \left(\sqrt{17} \right)^2$$

$$AC^2 + 1 = 17$$

$$AC^2 + 1 - 1 = 17 - 1$$

$$AC^2 = 16$$

$$\sqrt{AC^2} = \sqrt{16}$$

$$AC^2 = 4$$

Find x.

$AB = 5 + 1$

$AB = 6$

$$x^2 = 4^2 + 6^2$$

$$x^2 = 16 + 36$$

$$x^2 = 52$$

$$\sqrt{x^2} = \sqrt{52}$$

$$x = \sqrt{4 \cdot 13}$$

$$x = 2 \sqrt{13}$$

[3] answer not in simplest radical form OR one computational error

[2] two computational errors

[1] more than two error OR wrong sides used in equations

PTS: 1 DIF: L4 REF: 10-2 The Pythagorean Theorem
OBJ: 10-2.1 Solving Problems Using the Pythagorean Theorem
STA: CA A1 2.0 | CA A1 24.2
KEY: Pythagorean Theorem | right triangle | radical expressions | extended response | rubric-based question
24. ANS:

\[
\left(2\sqrt{5} + 3\sqrt{7}\right)^2
= \left(2\sqrt{5} + 3\sqrt{7}\right)\left(2\sqrt{5} + 3\sqrt{7}\right) \quad \text{definition of square}
= 4\sqrt{25} + 12\sqrt{35} + 9\sqrt{49} \quad \text{Use Foil.}
= 4(5) + 12\sqrt{35} + 9(7) \quad \text{Combine like radicals.}
= 20 + 12\sqrt{35} + 63 \quad \text{Simplify } \sqrt{25} \text{ and } \sqrt{49}.
= 12\sqrt{35} + 83 \quad \text{Multiply.}
\]

[3] answer not in simplest radical form OR one computational error
[1] more than two errors OR wrong sides used in equations

PTS: 1 DIF: L3 REF: 10-3 Operations With Radical Expressions
OBJ: 10-3.2 Simplifying Products and Quotients STA: CA A1 2.0 | CA A1 25.0
TOP: 10-3 Example 4
KEY: FOIL | radical expressions | extended response | rubric-based question
25. **ANS:**

\[
\sqrt{3x} - 1 = -4 \\
\sqrt{3x} = -4 + 1 \\
\sqrt{3x} = -3 \\
\left(\sqrt{3x}\right)^2 = (-3)^2 \\
3x = 9 \\
x = \frac{9}{3} \\
x = 3
\]

Check

\[
\sqrt{3x} - 1 = -4 \\
\sqrt{3(3)} - 1 = -4 \\
\sqrt{9} - 1 = -4 \\
3 - 1 = -4 \\
2 \neq -4
\]

\[
\sqrt{3x} - 1 = -4 \text{ has no solution}
\]

[3] no conclusion stated OR one computational error
[2] wrong procedure OR two computational errors
[1] no work shown OR more than two computational errors

PTS: 1 DIF: L3 REF: 10-4 Solving Radical Equations
OBJ: 10-4.2 Solving Equations With Extraneous Solutions STA: CA A1 2.0 | CA A1 25.2
TOP: 10-4 Example 5
KEY: radical equation | extraneous solutions | solving equations | extended response | rubric-based question