Measurement and Density Lab Activity

This lab activity has two parts. In Part 1 you will familiarize yourself with the basic units of the metric system and practice measuring accurately. In Part 2 you will use your measuring skills to determine the density of several objects.

<u>Part 1</u>

The metric system is based on standard units of length, mass and volume. The standard units are:

- Length meter
- Mass gram
- Volume (liquid) liter
- Volume (solid) cm³
 1 mL = 1 cm³
- 1. Measure the length and width of this piece of paper in cm then convert to inches.
 - a. Length _____ cm, _____ in , Width _____ cm, _____ in
 - b. What is the area of the piece of paper? _____ cm², _____ in²
- 2. Grab an Earth Science textbook and measure the three dimensions in cm then convert to inches.
 - a. Length _____ cm, ____in, Width _____ cm, ____in, Height _____ cm, _____in
 - b. What is the volume of the textbook? _____ cm³, _____ in³
- 3. Grab a rubber stopper and mass it on the balance in grams, then convert to ounces.
 - a. Mass _____ g, _____oz
- Take a graduated cylinder and fill it *about* half-way full of water. (<u>Don't worry about</u> <u>getting it exactly half</u>).
 - a. Measure the volume of water in the cylinder. <u>Be sure to read the level at the</u> <u>bottom of the *meniscus*</u>. Volume of water _____ mL.
 - Now carefully add the rubber stopper to the cylinder and measure the new volume. Volume of water + rubber stopper: _____ mL.
 - c. Calculate the volume of the rubber stopper by subtracting your measurement in
 (a) from (b). Volume of rubber stopper _____ mL
 - d. How many cubic centimeters is the rubber stopper? _____ cm³

<u>Part 2</u>

Now you will measure the density of 3 metal rods. Density is measured with the following formula:

Copy and fill in the following data table:

Metal	Mass (g)	Volume of Water (mL)	Volume of Water + Metal (mL)	Volume of Metal (mL)	Density (g/mL)
2 in gold					
2 in silver					
4 in silver					
Rock					
Item of your choice					

- 1. How does the volume of the 2-in silver rod compare to the 2-in gold rod?
- 2. How does the volume of the 2-in silver rod compare to the 4-in silver rod?
- 3. Which of the two metals has more mass in the same volume? Explain.
- 4. Explain in your own words what you think density is?
- 5. Use the table below to identify the metals.

a. Gold ______ Silver _____

Copper	Zinc	Gold	Aluminum	Brass
9.0 g/cm ³	7.1 g/cm ³	19.3 g/cm ³	2.7 g/cm ³	8.4 g/cm^3