Murrieta Valley Unified School District High School Course Outline April 2013

Department: Math

Course Title: Advanced Placement Calculus AB

Course Number: 2400

Grade Level: 11-12 elective

Length of course: Two semesters

Prerequisite: Math Analysis and Trigonometry with a B or better; or Precalculus

with an A

I. Goals - 1st Semester

The student will:

- A. Demonstrate knowledge of the real number system by
 - 1. Identifying subsets of real numbers
 - 2. Determining order relationships on the real number line
 - 3. Defining sets of real numbers using interval and set notation
 - 4. Solving rational inequalities
 - 5. Writing the definition and using the properties of absolute value
 - 6. Solving absolute value equations and inequalities
- B. Demonstrate knowledge of functions, their graphs and other curves by
 - 1. Finding the slope of a line given its graph or equation
 - 2. Writing the equation of a line in slope-intercept or point-slope form
 - 3. Writing the definition of a function
 - 4. Identifying the domain and range of a function given its graph or equation
 - 5. Graphing and translating functions with and without calculators
 - 6. Forming new functions by performing arithmetic operations and/or function composition on two or more original functions
 - 7. Finding the inverse of a function
 - 8. Determining the symmetry of a function
 - 9. Expressing functions in parametric form
 - 10. Graphing parametric equations with and without a calculator
- C. Demonstrate the ability to use limits to predict and explain the local and global behavior of functions by
 - 1. Writing the definition of a limit
 - 2. Calculating limits
 - 3. Estimating limits from a graph or table

- 4. Describing asymptotic behavior in terms of limits
- 5. Writing and applying the definition of continuity at a point and on an interval
- 6. Recognizing the implications of continuity as it pertains to the Intermediate Value Theorem and Extreme Value Theorem
- D. Demonstrate understanding of the concept of the derivative by
 - 1. Finding a derivative by calculating the limit of a difference quotient
 - 2. Interpreting the derivative as an instantaneous rate of change
 - 3. Explaining the relationship between differentiability and continuity
 - 4. Demonstrating the relationship between the graph of a function and that of its derivative
 - 5. Finding the instantaneous rate of change by calculating the limit of average rate of change
- E. Demonstrate the ability to apply the geometric interpretation of the derivative by
 - 1. Finding the slope of a line tangent to the graph of function at a point
 - 2. Explaining the relationship between the derivative at a point and the slope of a secant line through that point
 - 3. Writing and explaining the Mean Value Theorem and its geometric consequences
 - 4. Determining where a function is increasing or decreasing based on the value of its derivative
 - 5. Determining concavity and points of inflection of a function using the first and second derivatives of the function
- F. Demonstrate the ability to find the derivative of a function by
 - 1. Computing the derivatives of sums, products and quotients of functions
 - 2. Applying the formulas for derivatives of basic functions including polynomial, exponential, logarithmic, trigonometric and inverse trigonometric functions
 - 3. Using the chain rule
 - 4. Performing implicit differentiation
- G. Demonstrate the ability to apply the derivative of a function by
 - 1. Drawing the graph of a function based on information about its first and second derivatives
 - 2. Finding absolute and relative extrema
 - 3. Solving optimization problems
 - 4. Solving related rate problems
 - 5. Finding limits of indeterminate functions
 - 6. Using implicit differentiation to find the derivative of an inverse function
 - 7. Finding the equations of tangent and normal lines at a point on a curve

- 8. Finding the local linear approximation using differentials and derivatives
- 9. Using derivatives to relate displacement, speed, velocity and acceleration

H. Demonstrate understanding of the concept of integration by

- 1. Evaluating indefinite integrals of basic algebraic, trigonometric, logarithmic, exponential and inverse trigonometric functions
- 2. Evaluating indefinite integrals by substitution
- 3. Using indefinite integrals to find slope/direction fields and solve basic differential equations and initial value problems
- 4. Using the Fundamental Theorem of Calculus to evaluate a definite integral
- 5. Using substitution and limit conversion to evaluate a definite integral

I. Demonstrate understanding of the relationship between area and the definite integral by

- 1. Approximating the area under a curve by Riemann sums using left, right, and midpoint evaluation points
- 2. Finding the exact area under a curve by finding the limit of the Riemann sum
- 3. Defining the definite integral as the limit of a Riemann sum over both equal and unequal subintervals
- 4. Applying the linear and additive properties of definite integrals
- 5. Deriving and applying the Mean-Value Theorem for Integrals
- 6. Interpreting the definite integral of the rate of change of a quantity over an interval as the change in the quantity over the interval

J. Demonstrate the ability to apply integration by

- 1. Finding the area under a curve
- 2. Finding the area enclosed by two curves
- 3. Finding the volume of a solid of revolution using disks and washers
- 4. Finding the volume of a solid of revolution using cylindrical shells
- 5. Finding the length of a plane curve
- 6. Finding the area of a surface of revolution
- 7. Finding the distance traveled by a particle moving along a line
- 8. Finding the average value of a function over an interval
- 9. Finding the work done by a variable force
- 10. Finding the fluid force exerted on a submerged surface

II. Outline of Content for Major Areas of Study

Semester I

- A. The real number system
 - 1. Subsets of real numbers
 - 2. The real number line and order relationships

- 3. Interval and set notation
- 4. Rational inequalities and absolute value equations and inequalities
- 5. Properties of absolute value

B. Functions, their graphs and other curves

- 1. Slope as a rate of change and equations of lines
- 2. Definition of a function and domain and range
- 3. Combinations, compositions and inverses of functions
- 4. Symmetry of functions
- 5. Parametric equations

C. Limits and continuity

- 1. Definition of a limit
- 2. Estimating and calculating limits
- 3. Definition of continuity

D. The concept of the derivative

- 1. Definition of a derivative and the limit of a difference quotient Interpretations of a derivative
- 2. Differentiability and continuity
- 3. The relationship between the graph of a function and its derivative
- 4. Instantaneous rate of change as a limit of average rate of change

E. Geometric aspects of the derivative

- 1. Derivatives as the slope of the tangent line
- 2. Tangent lines as the limit of secant lines
- 3. Mean Value Theorem
- 4. Intervals of increase/decrease, concavity and points of inflection

F. Finding the derivatives of functions

- 1. Derivatives of sums, products and quotients
- 2. Formulas for derivatives of polynomial, exponential, logarithmic, trigonometric and inverse trigonometric functions
- 3. The chain rule and implicit differentiation.

G. Applications of the derivative

- 1. Using derivatives to draw the graph of a function
- 2. Absolute and relative extrema
- 3. Optimization using derivatives
- 4. Related rates
- 5. Limits of indeterminate functions
- 6. Implicit differentiation and derivatives of inverse functions
- 7. Local linear approximation
- 8. Equations of tangent and normal lines
- 9. Displacement, speed, velocity and acceleration

Semester II

A. The concept of integration

- 1. Indefinite integrals of basic algebraic, trigonometric, logarithmic, exponential and inverse trigonometric functions
- 2. Evaluating integrals by substitution
- 3. Slope/direction fields
- 4. The Fundamental Theorem of Calculus
- 5. Substitution and limit conversion to evaluate definite integrals

B. Area and the definite integral

- 1. Riemann sum approximations of area
- 2. Limits of Riemann sums to find exact area
- 3. The definition of the definite integral as the limit of a Riemann sum
- 4. Properties of definite integrals
- 5. The Mean-Value Theorem for Integrals

C. Applications of integration

- 1. Area under a curve
- 2. Area enclosed by two curves
- 3. Volumes of solids of revolution
- 4. Length of a plane curve
- 5. Area of a surface of revolution
- 6. Distance traveled by a particle moving along a line
- 7. The average value of a function over an interval
- 8. Work done by a variable force
- 9. Fluid force exerted on a submerged surface

III. Accountability Determinants

- A. Quizzes and examinations of basic understanding and problem solving skill
- B. Lab projects.
- C. Homework assignments
- D. Oral presentations

IV. AP Exam Requirement

Students attempting to receive college credit for Advanced Placement and International Baccalaureate courses are required to pass a College Board exam which validates coursework. This exam **is not a requirement** for District High School credit, grade increases, or extra credit.

Student fees are allowable for Advanced Placement and International Baccalaureate Diploma examinations **for college credit**, so long as (1) taking the exam is not a course requirement; (2) the exam results have no impact on a pupil's grade or credit in a course; and (3) eligible economically disadvantaged high school pupils who receive school district funding towards the exam fee shall

pay \$5.00 of the fee. (EC sections 52240-52244; 52920-52922.)

V. Required Text

Anton, Howard; Bivens, Irl; David, Stephen. *Calculus--Early Transcendentals*, *7th Edition*. New York: John Wiley and Sons, 2002.

VI. Supplemental Materials

Finney, Ross L. *Calculus – Graphical, Numerical, Algebraic.* Needham, Massachusetts: Pearson/Prentice Hall, 2003.