Unit 10: Properties of Circles

Circle Vocabulary and Tangents

Objective: Identify segments and lines related to circles.

Use properties of a tangent to a circle.

Word	Description	Drawing
Circle: the set of all points in a plane that are equidistant from a given point called the <u>center</u> of the circle		
Radius: a segment whose endpoints are the center and any point on the circle		
Chord: a segment whose endpoints are on a circle		
Diameter: a chord that contains the center of the circle		
Secant: a line that intersects a circle in two points		
Tangent: a line in the plane of a circle that intersects the circle in exactly one point (the <i>point of tangency</i>)		
Point of Tangency: the point where a tangent line intersects the circle		

EXAMPLE 1: Tell whether the line or segment is best described as a chord, a secant, a tangent, a diameter, or a radius— be specific!

RULE: In a plane, a line is tangent to a circle if and only if the line is perpendicular to a radius of the circle at its endpoint on the circle	
RULE: Tangent segments from a common external point are congruent.	

b.

EXAMPLE 2: Using Properties of Tangents \overline{SR} and \overline{ST} are tangent to $\Box C$. Find the value of x.

Arc Measurement/ Properties of Chords

Objective: Use properties of arcs of circles Use properties of chords of circles

Central Angle: an angle whose vertex is the center of a circle	
Minor Arc: part of a circle that measures less than 180°	
Major Arc: part of a circle that measures between 180° and 360°	
Semicircle: an arc with endpoints that are the endpoints of a diameter of a circle. The measure of a semicircle is 180°	
Measure of a Minor arc: the measure of the arc's central angle	
Measure of a Major arc: the difference between 360° and the measure of the related minor arc	

EXAMPLE 1: Finding measures of each arc of circle R. (NP is a diameter)

a. <i>MN</i>	R
b. MPN	N (100° P
c. PMN	M

d. *PM*

Arc Addition Postu The measure of an adjacent arcs is the measures of the tw	ulate arc formed by two e sum of the vo arcs	
EXAMPLE 2: Finding	g the measures of Arcs	
a. ĜE	b. \widehat{GEF}	GH
c. <i>GF</i>	d. FHE	F 80 110

Inscribed Angles and Polygons

 $m \angle BAC = ?$ D) E) $m \angle BAC = ?$ С В 0 94° 132° RULE: If two inscribed angles of a circle intercept the same arc, then the angles are congruent. **EXAMPLE 2:** $m \angle E = 75^\circ$. What is $m \angle F$? b) (2x + 11)° Ε (4x – 3)° **Inscribed Polygons. Right Triangle RULE:** If a right triangle is inscribed in a circle, then they hypotenuse is a diameter of the circle. Conversely, if one side of an inscribed triangle is a diameter of the circle, then the triangle is a right triangle and the angle opposite the diameter is the right angle. **Quadrilateral RULE:** A quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary.

EXAMPLE 3: Find the value of each variable.

Other Angle Relationships in Circles

B)

F)

H)

Equation of the Circle

Objective: Write the equation of a circle. Use the equation of a circle and its graph to solve problems.

Equation of a Circle			

EXAMPLE 1: Write an equation of a circle with the given radius and center.

a. r = 5 (12, 80) b. r = 9 (6, 12)

EXAMPLE 2: Identify the center and radius of the following

a. $(x-6)^2 + (y-24)^2 = 25$ b. $(x-9)^2 + (y-42)^2 = 49$

c.
$$(x+8)^2 + (y-17)^2 = 1$$

d. $(x-10)^2 + (y+9)^2 = 64$

EXAMPLE 3: Graphing an Equation of a Circle a. $(x+3)^2 + (y-2)^2 = 4$

b. $(x-3)^2 + (y-1)^2 = 16$

